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ABSTRACT

The load, mass flow, stiffness, and damping for an inherently

compensated, multiple-inlet, externally pressurized square thrust

bearing are analyzed. Small perturbation methods are used to linearize

Reynolds' equation, and numberical methods are employed to find the

solution to the resulting equations. Design curves are presented in

terms of restrictor coefficient, supply pressure, and location of the

inlets for low squeeze numbers.

Optimum bearing stiffness occurs at a restrictor coefficient

between one and two. At this value the damping is a minimum and

negative damping (instability) can be present at supply pressures

exceeding four atmospheres. Stiffness increases with supply pressure.

Optimum damping occurs at a restrictor coefficient equal to five.

Stiffness is considerably reduced but can be improved by operating

at high supply pressures.
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NOMENCLATURE

SYMBOL DESCRIPTION

* Denotes real variable

a Iteration count

8 Increment ratio (Length/Width -- Ax/Az)

s Perturbation parameter

y Normalized span across outer sill

X Dimensionless width (Bearing width/Bearing length)

A Restrictor Coefficient

1 Fluid viscosity

w* Excitation frequency

P* Density of film
121w*L* 2

a Squeeze number ( h*2 P*
o a

1-2y
a Maximum value of x on the boundary (-T--)

A-2Y
b Maximum value of z on the boundary (-- )

CD Orifice discharge coefficient

d Orifice diameter

D* Damping

D Dimensionless damping [D*/(XL *(L*/h*) 3

a af 2 b af2
F f ( 1 )dx + f ( ) xa+ dz

o az z-b+ o ax

g [ Pl(x,z)P2 (x,z,t) I

go Acceleration of gravity

h* Film thickness

h* Mean film thickness
0

h Dimensionless film thickness
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NOMENCLATURE (continued)

SYMBOL DESCRIPTION

i Row number in numerical field

j Column number in numerical field

k Ratio of specific heats ( cP )
cv

K* Stiffness

KS Dimensionless stiffness [ K* ho/(XP*L*2 (Ps -1))

L* Bearing length

m* Mean mass flow

ml  Dynamic mass flow through orifice

m2  Dynamic mass flow through outer sill

*m Dynamic mass flow from central region

* Mass flow through orifice

M2 Mass flow through outer sill

M Mass flow from central region

Na Maximum column number at inlet boundary

Nb Maximum row number at inlet boundary

N 1  Number of inlets

P* Pressure

P Dimensionless pressure (P*/P*a)

P*a Ambient pressure

P1  Dimensionless static pressure

P2 Dimensionless dynamic pressure

Pi Dimensionless dynamic pressure downstream of inlet

Po Dimensionless static pressure downstream of inlet

Ps Dimensionless supply pressure

r Inlet span to total bearing span ratio
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NOMENCLATURE (continued)

SYMBOL DESCRIPTION

R Gas constant

t* Time

t Dimensionless time (t* *)

T Temperature

W* Bearing load

W Dimensionless bearing load (W*/X P*aL*
2 )

W* Static load
1

W 1  Dimensionless static load

* Dynamic load
W2

W2  Dimensionless dynamic load

x* Variable length

x Dimensionless variable length (x*/L*)

z* Variable width

z Dimensionless variable width (z*/L*)



CHAPTER I

INTRODUCTION

Energy loss and the wear of machine parts due to friction are two

of the problems which are faced in industry every day. Fluid film

bearings are used at critical areas to reduce this friction. The fluids

used in these bearings are usually a gas or oil. With the reduction of

friction, the lives of the machines are lengthened which saves the

industries large amounts of money both in labor and shut-down time.

The two basic types of bearings used in industry are the thrust

bearing and the journal bearing. The journal bearing supports radial

loads; whereas, the thrust bearing supports an axial load. In some

cases, thrust bearings have been used in conjunction with journal

bearings to provide damping for radial loads.

A bearing load can be supported hydrodynamically or hydrostatically.

In hydrodynamic lubrication, Figure l(a), high pressure is developed

when the fluid film is "dragged" along as a wedge. The fluid film in

a hydrostatic bearing must be externally pressurized to support a load.

The externally pressurized bearing may be either orifice compensated,

Figure l(b), or inherently compensated, Figure 1(c). Each of these

geometries has a flow inlet restriction area which controls the flow

through the bearing. The "restrictor" is dependent upon the orifice

area in the orifice compensated case and is dependent upon the hole

diameter and film thickness in the inherently compensated case.

In recent years, there has been a rapid growth in the development

of gas bearing supported systems. The reason for this growth is that

industry is beginning to recognize the many advantages of gas
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(a) Hydrodynamic Lubrication

(b) Hydrostatic Lubrication-Orifice
Compensated

(c) Hydrostatic Lubrication-Inherent
Compensation

Figure 1. Examples of Gas Lubrication.
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lubrication. One of the most appealing advantages is the use of a pro-

cess fluid as the lubricant. This eliminates the need for an external

lubrication system. Some of the other advantages of gas lubrication

are: lower friction, no contamination, low-to-high temperature capabil-

ity, high speed capability, and high reliability and 
long life.

The response of gas bearings to small periodic load changes is

greatly influenced by the dynamic characteristics 
of the gas film.

Stiffness and damping are important parameters which affect this

dynamic behavior of the system. Stability problems arise when there

is negative damping present. Although inherently compensated bearings

have less stiffness than pocket-type bearings, they do exhibit improved

stability over the pocket-type bearings which are prone to pneumatic

hammer [11 ]*.

Richardson [ll was one of the first to carry out a theoretical

analysis of the dynamic characteristics of an orifice compensated gas

bearing. Using lumped parameter methods, he developed relationships

which could be used to obtain quantitative design information for

compensated gas bearings. Licht and Elrod [2] analyzed the stability

of an orifice compensated bearing similar to the one studied by

Richardson using distributed parameter methods. There was a marked

divergence from the results obtained by lumped parameter methods in the

case of the limiting values which influence the stability of the

bearing. Stiffler [3] has presented an analysis of an inherently

compensated, multiple-inlet, circular thrust bearing based on distributed

parameter methods. In his solutions, the stiffness and damping as

*Numbers in brackets refer to references



functions of supply pressure, inlet location, restrictor coefficient, and

excitation frequency are described by perturbation models.

Mullan and Richardson [4] used lumped and distributed parameter

analyses to develop solutions for the inherently compensated gas

journal bearing with small eccentricity ratios. After linearizing

Reynolds' equation using small perturbation methods, 
the computer was

used to obtain results which were presented in graphical form with

stiffness and damping as functions of supply pressure and flow. Lund [5]

presented a theoretical analysis for the threshold of instability of a

rigid rotor supported in hydrostatic gas journal 
bearings. Perturbation

techniques were used, and numerical results were given for the threshold

of instability as a function of supply pressure ratio, restrictor

coefficient and eccentricity ratio.

This thesis deals with an externally pressurized, inherently

compensated, multiple-inlet, square thrust bearing. A mathematical

model is formulated for the general rectangular case, as shown in

Figure 2, with the bearing dimensions normalized by the bearing length.

Thus, the bearing is of unit length and has a width, X, where X is the

actual bearing width divided by the length. The nonlinear Reynolds'

equation is solved using small perturbation techniques. 
Design curves

for the stiffness, damping, load, and mass flow are presented as

functions of inlet location, restrictor coefficient, and supply pressure

for small squeeze numbers. A theoretical analysis of these bearing

characteristics is developed in the following section.
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Figure 2. Inherently Compensated, Multiple-Inlet,
Rectangular Thrust Bearing.



CHAPTER II

FORMULATION OF THE MATHEMATICAL MODEL

For the development of the theoretical model, the bearing is

divided into three distinct regions--the inlet region, the central

region, and the sill region. The gas lubricant flows through the sill

and attains an ambient state at the outer edges of the sill. It is

assumed that there are enough inlets so that they may be considered

as an equivalent line source. Furthermore, only one quadrant is

considered since the bearing is symmetric.

2.1 Reynolds' Equation Applied to the Bearing

In order to solve for the mass flow, load, stiffness, and damping,

the pressure distribution throughout the bearing must be determined.

The pressure distribution is described by Reynolds' equation

a 3p* a aP* a
-- (h* 3 p* -- ) + -- (h* 3 p* -- ) - 12-- (p*h*) (2-1)
ax* ax* az* az* at*

The film thickness, h*, is uniform throughout the flow region,

since it is bounded by two parallel rigid surfaces. The separation of

the surfaces depends only upon the load disturbance.

It is assumed in the analysis that the film behaves as an ideal

gas with constant specific heats and that the flow is isothermal [6] with

P*/p* = constant. The following dimensionless variables,

P = P*/Pa

x = x*/L*

z = z*/L*
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t f t*W*

h = h*/h*

are introduced into Reynolds' equation to obtain

2  ,2 2a (

(P 2 ) + (p2) = (Ph) (2-2)

ax 2  z2  h3  at

where the squeeze number, a, is given by

12p1w*L* 2

S= (2-3)
h*2 Pa*

In terms of a perturbation parameter, e, the film height and

pressure distribution can be approximated as

h(t) = 1 + E sin(t) (2-4)

P(x,z,t) - Pl(x,z) + EP2 (x,z,t) (2-5)

where Pl(x,z) is the dimensionless static pressure distribution and

P2 (x,z,t) is the first order dimensionless dynamic 
pressure distribution.

When Equations (2-4) and (2-5) are substituted into Equation (2-2),

two equations are obtained from terms of order 0(1) and 0(E), respec-

tively.

a2p 1
2  a2p 2

0(1): - + 1 f 0 (2-6)
3x2  az2

2 (P 1P2) 2 (P 1P2 ) 3P2
0(C): + - o(Plcos(t) + -- ) (2-7)

3x2  D,2  at

Or, in a more convenient form, Equation (2-7) is written as

D2g a2g 2 ag
+ - = - [ Pl cos(t) + -- (2-8)

3x2 az2 P1 at
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where

g(x,z,t) - Pl(x,z) P2 (x,z,t) (2-9)

If the pressure at the inlet boundary is defined arbitrarily as

(Po + EPi), the remaining static conditions at the inner edges of the

sill are

P1 (x,b) = Po 0 < x < a

P1 (a,z) = Po 0 < z < b

where
1 - 2y X - 2y

a - and b -
2 2

At the outer edges of the sill the static pressure is ambient,

and

Pl(x,X/2) = 1 0 < x < 1/2

Pl(1/2,z) = 1 0 < z < X/2

The boundary conditions for Equation (2-8) are

g(x,X/2, t) = 0 0 < x < 1/2

g(1/2,z,t) = 0 0 < z < X/2

g(x,b,t) = PoP 0 < x < a

g(a,z,t) = PoPI 0 < z < b

In order to normalize the boundary conditions for Equation (2-6),

let

P2 1 + (Po2 - 1) P12 (2-10)

Then, upon substitution into Equation (2-6),

32w 2 212
----- + ------ 0 (2-11)

ax2 a z2

for which the boundary conditions are given by
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- 2P 1  (x, X/2) - 0

Fg2 (1/2,z) - 0

P12 (x,b) - 1

P12 (a,z) = 1

The load disturbance is assumed to be periodic. Thus, time may

be eliminated from Equation (2-8) by assuming a periodic solution for

the dynamic pressure.

Let

g(x,z,t) = gl(x,z) sin(t) + g2 (x,z) cos(t) . (2-12)

Substituting this expression into Equation (2-8), and equating

coefficients of the sine and cosine terms,

a2g1 a2g1  Og2+ -= (2-13)
3x2  az2 P1

2g2  a2g 2  a 2
2 + --- = + - [P1 + gl1 ] (2-14)

8x2 az2 P1

For the central region, the solution to Equation (2-11) is a

constant and is given by

12(x,z) = 1.

Along the sill, numerical methods are used to solve Equation (2-11).

After the static boundary pressure, Po, is specified, the static

pressure field can be found. The dynamic and static boundary pressures,

Pi and Po, must be determined from the continuity condition for the

mass flow at the inlet boundary. The solutions to the coupled Equations

(2-13) and (2-14) can then be found by numerical methods.
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2.2 Mass Flow

From flow continuity at the boundary,

MI + M* M M2

where

M* = mass flow through the inlets = m* + Em l

1 o

M2 = mass flow through the sill region - m*+

M* = mass flow from the central region = Em *

and mo is the mean flow through the inlets (and the sill region) for the

statically loaded bearing.

The mass flow through the sill region is given .by Constantinescu

[7] as

1 p*h*3  a ap* 2  b ap*2

M2  - f (-) + dx + f (- dz ] . (2-15)

12 p Po* -a az z-b -b a x

When Equations (2-4), (2-10), and (2-5) are substituted into Equation

(2-15) the linearized mass flow through the sill region is

P*2h*3 a 3g b ag
M* m* + 3m* esin(t) + a o (2e) [ f (-) dx + f (-)a dz ] (2-16)

2 12pRT -a az zb+ -b ax

where
P*2h,3a o 2

m -(p2 - 1) F (2-17)

6URT

and

2 2
a aP1 2  b aP 1

F= (-- ) --- + dx + ( -) a+ dz . (2-18)

o Thez , from the central region is given by the samex

The mass flow, M3, from the central region is given by the same



general expression as Equation (2-15) except that the derivatives are

evaluated at the inside of the inlet boundary. Thus,

Pa h2 a ag b ag
M* - 0 (2e) [ f (----) dx+ f ( ) dz ] (2-19)

12URT -a Dz zb- -b Dx xa-

where the mean flow is zero.

The flow through the inlets [8] is described by

1/2 P 1/k k-1
CDN17do ho*hPPa 2gok 1/2 /k P 1/2

Ml [- ] ( ) [1-(-) I
k - 1 P Ps

Po 2 k
- > (-k-)k1 (2-20)

P k+l

or

C ad h *hP ,P* 1/2 1
1/2

CDNl*do~hohPsPa 2gok 1/2s2 k-i
M 1 = -( ) (--) ,

T k+1 k + 1

k
o < k-I

P < (-- ) (2-21)
Ps k+l

Equations (2-4) and (2-5) can be substituted into Equations (2-20)

and (2-21), and, when terms of order 0(1) and 0(e) are retained,

k
Pi *P 2 k-i

M1  = mo  1 + [sin(t) + (- ) c2 ] E ,- > (--) (2-22)
Ps PS k+1
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or

k
P 2 k-

Ml M m*o + mo Esin(t) , -- < (- 2-23)
P k+1

where _

1 Ps k-1 (Po/Ps)

a2 = -- (---) - -- k- ] (2-24)
k P 2k 1 - (P/Ps)-k

and

CDNldo*ho PsPa 2gok 1/2 /k 1/2
mo =(- ) (- ) k[1-

RT k-I Ps PS

P 2 --k
- > (-)-) (2-25)
P k+1

or

1/2 :1
S CDN17rdo hoP Ppa 2gok 1/2 2 1

m (----) (
o R f k+1 k+1

k
Po 2 k-
- < (-) (2-26)

P, k+1

From the continuity requirement for the mean mass flow through the

bearing, and for adiabatic flow through the orifice, Po is given by

A P P k- 1/2 P 2 k
1 =-----) Ps2 [1- ( k - (2-27)

P -1 P Ps P k+1

and

2 2  k-1 1/2 2  k Po 2 f

P 1 + AP ( ) (------) , -- < ( ) (2-28)
S s k+l k+l Ps k+l
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where the restrictor coefficient, A, is

*1/2

6 CDN1w7do 2gokRT 1/2

A-- [ ]
Ps a*ho*2F (k-l)

and F is given by Equation (2-18). The restrictor coefficient, A, is a

dimensionless parameter which gives an indication of the resistance to

the mass flow through the orifice and the sill. As the restrictor coeffi-

cient increases, the resistance to mass flow increases.

The pressure downstream of the orifice, Po, is directly affected

by the restrictor coefficient. An increase in the restrictor coefficient

results in an increase in the pressure downstream of the orifice. If the

flow is not critical, a Newton-Raphson method is used to solve Equation

(2-27) for Po, or if the flow is critical, Po is obtained directly from

Equation (2-28). Once Po is found, the static pressure distribution

throughout the bearing (and the bearing load) can be obtained.

To determine the boundary conditions for Equations (2-13) and (2-14),

the perturbed mass flows are equated:

, • *

0(c): m3 + m1  " m2

After substitution of the assumed form of g(x,z,t) given by Equation

(2-12) and equating the coefficients of the sine and cosine terms,

gl(x,z) and g2 (x,z) along the inlet boundary are obtained from

2PoPs a g1  gl b 3gl
gl(x,z) = - [ ( -- b - (_ ]dx + [ ( )

oa2P2-1)F o z bz z-b- o x xa+

z}1 2PoPs
-( ) I d + POP (2-29)

ax x=a- ] 2
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and

2PoP a ag2  ag2

g2 (x,z) =- (----) 0 a dx
a 2 (Po 2 -1)F Lo z z=b +  (-z zb -

b ag2 g2
+ [(--) - (a ) ] d (2-30)

o ax x-a +  ax a-

for P 2
0 k-i

Ps k+1

or
a ag1  a8gl b ag1  ag1
S[() ]dx + f [(- ) - (-----) ]dz

o asz zb+ az -b- o ax x-a+ ax x=a-

= - F(Po -1) (2-31)

and

a 8g2  a8 2  b a8g2  a8 2
f [(- ) - ( ) ]dx + f [(- ) - ) ]dz = 0
o 3z z=b+ az z-b o ax x=a+ ax x-a-

(2-32)
k

for P 2o ) k-1
-< C -)

Ps k+l

.2.3 Bearing Load

If the restrictor coefficient is specified, the static pressure

distribution can be found from the solution of either Equation (2-27)

or Equation (2-28). The static load is then given by

X/2 1/2
W1 - 4 f f P1 (x,z) dx dz (2-33)

o o
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where the double integral is taken over the entire quadrant.

Also, given the solutions for gl(x,z) and g2 (x,z), the dynamic

pressure distribution is simply

gl(x,z) g2 (x,z)
P2 (x,z,t) = sin(t) + cos(t)

Pl (x,z) Pl(x,z)

The dynamic load is defined by

X/2 1/2
W2 = 4 f f P2 (x,z,t) dx dz (2-34)

o o

where the double integral is again taken over the quadrant. The dynamic

load is then written in the form

W2 - C sin(t) + B cos(t) . (2-35)

2.4 Stiffness and Damping

If the bearing load executes small harmonic motion, the equation

of motion is written

dY*

W + W2*- - K* Y* - D* (2-36)
dt*

where K* and D* are the stiffness and damping constants respectively,

and Y* = cho* sin(w*t*). Equation (2-36) can be rewritten as

W2 K*ho* D*ho*W*
W2 = - sin(t) - cos(t) (2-37)

XP,*L* 2  Xpa*L*2 Xpa*L* 2

By comparison of the above equation with Equation (2-35), dimensionless

stiffness and damping can be defined by
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C K*ho*
Ks =- = (2-38)

Ps- 1  XPa*L*2(Ps-1)

12B D
D - (2-39)

a XL*( L* )3V
ho



CHAPTER III

IMPLEMENTATION OF THE NUMERICAL METHODS

Due to the boundary conditions and the geometry of the problem, a

closed form solution was not found. Several approximate methods were

considered without success, and it was necessary to use a finite

difference technique to solve the problem. In this chapter, the

numerical model which is used to represent the problem is presented.

3.1 The Equations in the Field

The successive-over-relaxation (SOR) method (9] was used to model

Equations (2-11), (2-13), and (2-14) in the field. This method was

chosen because it offered the advantages of fast convergence and small

computer storage. In the SOR method, the most recently computed value

at any surrounding node is used when the value at a particular node is

computed. A temporary value at a particular node is calculated; then,

the weighted average of this value and the old value at the node is taken

using an acceleration parameter, and this average is the new value at

that node. Central differences are used to represent the partial deriva-

tives. This central difference technique gives a truncation error on

the order of the square of the spatial increment, Ax2 or Az2.

Letting fi,j represent (p1
2)i,j and the applying the SOR method,

Equation (2-11) is modeled as follows:

f1 2fa + +l 2 2 a+1Sj 2(l+02) i,j+l +  fi,-i + Bf , +  l, (3-1)
+8 i-jj(31
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fi,j =  1 flj + (1 - Wl) f,j (3-2)

where 8 A= x/Ay and l is the acceleration parameter.

In order to have the fastest convergence possible, an optimum

acceleration parameter, wo, must be chosen. Roache [9] gives this

parameter for a rectangular field with Dirichlet boundary conditions:

1- ii
o " 2 ( ) (3-3)

where

cos( - ) + 2 cos (- )
I-1 J-1 2

T = [ ] . (3-4)
1+ 82

The acceleration parameter, wl, used in Equation (3-2) is the one cal-.

culated in Equation (3-3).

Equations (2-13) and (2-14) are modeled as follows:

S [(gl) + a+l + 2 ( 2 -a+1
=)ij  2 ( 1 B2 ) i,j+l (1)ij_ 1  (1l)i+,j + )i1,j

Ax20
+ (g2 ) a (3-5)

(P1)i,j i

(g)i, 2(l) + ( a (3-6)
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1 el $2 2 L

(2)i,j 2(i+2 1(2) 1  9+ (2)i,j- 1 + +2) 1  1S(g -i 2) 2;i-

Ax2 ,
- Ax2 °(P)i,j " (gl)i,j ] (3-7)

(P1)ij

2)i,j = 2(2)i, + (1 - 2)(2) (3-8)

Operations are performed in order from Equation (3-5) through Equation

(3-8) for each node (i,j).

Again, an optimum acceleration parameter is needed; however, there

is no analytical formula which gives this parameter. Trial and error

procedures were used, and the acceleration parameter was found to be

sufficiently close to that given by Equation (3-3). Thus, Equation (3-3)

was used in all cases to find the needed parameter.

Having modeled the equations in the field, the boundaries must be

modeled. In the case of Equations (3-1) and (3-2), the boundaries

have constant values, but this is not the case for Equations (3-5)

through (3-8). They have Dirichlet boundary conditions at the outer edge,

but the conditions along the inlet boundary depend on the mass flow.

3.2 Mass Flow

From mass flow relationships, Equations (2-29) through (2-32) were

derived to describe gl(x,z) and g2 (x,z) at the inlet boundary. The two

functions, gl(x,z) and g2 (x,z), are constant along this boundary, and

their values on the boundary can be computed using Simpson's 1/3 Rule
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and central differences. After rearranging, gl(x,z) and g2 (x,z) on the

boundary are given by

l Nb ( + l c + l1(g1)ij C2  [(g8) + (g1 ) 1 , + 4[(g) j+1 + ()
p p-1,j+l -j+ pj+ ,

+1i a+1 Az Na  a+l
+ (gl)p+1,j+l + (g1)p+,j-1 ] -- + [(gl8)i+,q-1

3Ax q

+i '1 0+1 + ' + +1
S(l)i-l,q-1 + 4[(g)i+,q + (l)i-l,q] + ( i+,q+1

c+1 x 2Po P
+ (gl)i-,q+l ] ' + 1  (3-9)

3Az M2

and

2) C2  ( 2z)p 1,S+ 1 + (82)p- -1 + 4[(g2)p+l 2)1-1

Az Na

(g2)p+l,j+l + (82)~ a+ (2)i+l,q-1

( P+I1 x1

(82)i-1,+1 I - (3-10)

for
k

Po 2 k
Ps k+l
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or

aF Nb O*1- ca+1 1 a~
ct+1il C3  E~ Z (gj1p-1,J+1 + (g1)pj.1 + "d (gl)o +i S~~-

L.li- Pl~ 9)l-

ACla~ z Na ct+1

+ ( ,) P J ,~ l ( g~ p l~ j -l ] 3A x + q 1 9 ) ~ ~

+ ti~li~- + 4[(gi)a~il + Sgi) 7q I + (91 c+l
+ ( g ~ i -~ q -1i ~ l q i - vq + 1 ,q + 1

Ot+1 Ax 2 (311
+]g~-lql- +F(p 1 3-1

and

1 C3 [ Nbo~ + (92) al + 4[(92) Ot~ + (92) +'~

+ (9 2 )opt+,j+i + (92] ****l 1 + a,(2i~~
A x q

+ (92)i-l,q-1 + 4[(92) £+1,q + (92)i-1,q + +9)i~~~

+ 0~i+1 Ax (3-12)
(92i-lq~3AzJ

for

P0  2 k
0 _ -

ps k+1
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where p = 2,4,6,....Nb and q w 2,4,6,....N a

with

2 PoPS 1
C2 - _( )

M2 (Po 2 - 1) F 2 PoPs 2AzNb 2 AxN a
+ (-- + )

2 (Po -1)1 . Ax Az

C3 -
2AzNb 2axN a-+
Ax Az

Using Simpson's 1/3 Rule and central differences,

Nb
F = E [fp-lj+l - fp-lj + 4 (f p,j+l - fp,j) fp+l,j+l f p+l,

Az Na
S+ Z [fi+l,q-1 - fi,q-1 + 4 (fi+l,q - fi,q) + fi+l,q+l - fi,q+l

3Ax q

Ax

3Az

with p - 2 ,4 ,6 ,....Nb and q - 2 ,4,6,....Na.

When solutions for gl(x,z) and 82(x,z) through the entire field

are found, Simpson's 1/3 Rule is again used to compute C and B for use

in Equation (2-35).



CHAPTER IV

ANALYSIS OF THE RESULTS

The design of a thrust bearing is based upon the value of a

restrictor coefficient which gives either maximum stiffness or maximum

damping. The bearing is analyzed at a small squeeze number for two

reasons:

1. Most design work will be done for smaller squeeze numbers (Y < 4)

and the stiffness and damping are insensitive to the small squeeze

numbers.

2. For larger squeeze numbers, the stiffness increases and damping

decreases[ 3].

The curves describing the effect of important bearing parameters on

load capacity, stiffness, damping, and mass flow are shown for a square

bearing (A - 1) in Figures 3-14. After an error analysis, these

relationships are discussed.

4.1 Error Analysis

In the solution of the problem by finite difference methods,

Equations (2-11), (2-13), and (2-14) were modeled using central

differences. Due to the truncation of the Taylor series in the

development of the finite difference model, there is an error in the

numerical model. The error in the model of the equation describing

the static pressure distribution is of the order of the product of 10-6

and the fourth spatial derivative of the solution. In the case of

modeling the coupled equations describing the dynamic pressure

distribution, the error is of the order of the product of 10 and the
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fourth spatial derivative. These errors are not significant since the

fourth spatial derivatives are very small.

Convergence was assumed to have been attained when the absolute

value of the maximum change in the field from one iteration to the next

was less than some specified change. This change in the solution of the

static pressure distribution was on the order of 10-3 . In the case of

the solution for the dynamic pressure distribution, the maximum change

allowable was of the order 10-5

4.2 Load Capacity

A dimensionless bearing load capacity, Wo, is presented as a

function of the restrictor coefficient, A, and supply pressure, Ps, in

Figures 3-5 for ratios of inlet span to bearing span, r - 0.4, 0.6, 0.8.

The dimensionless load capacity is defined by

Wl*

O Pa*L* 2 (P,-1)

where X = 1.

At a fixed restrictor coefficient (i.e., a fixed Po) the load

capacity increases with r. The reason is that more of the bearing pad

is enclosed by the inlets where the pressure is uniform at Po (the

pressure decays from Po to 1 across the sill). Little change in load

capacity occurs for variations in the restrictor coefficient in the

range of very high restrictor coefficients and the range of very low

restrictor coefficients for all geometries.
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4.3 Damping

The dimensionless damping is very dependent upon the restrictor

coefficient for all geometries and supply pressures as can be seen in

Figures 6-8. When instability occurs, negative damping is present. The

figures show that instability can occur for supply pressures as low as

Ps 8  5, depending upon the inlet location. The range of restrictor

coefficient, A, for instability varies considerably with geometry. The

widest range of instability occurs for the geometry, r = 0.4, and the

range decreases for increasing r. With high supply pressures, maximum

damping occurs in the ranges, A = 5 and A < .1. With low supply press

sures, damping approaches a maximum as the restrictor coefficient

approaches zero. Within the above ranges, geometry does not have much

effect upon the damping. Of course, it is desirable to maintain high

stiffness when a design is based upon maximum damping. Thus, the final

choice of restrictor coefficient depends upon its relation to the

stiffness.

4.4 Stiffness

The relationship between the stiffness, Ks, and the restrictor

coefficient, A, is shown in Figures 9-11. The stiffness is very sensitive

to the restrictor coefficient and is a maximum in the range 1 < A < 2,

which is the range where instability occurs for the higher supply pres-

sures. However, at larger values of span ratio, r, instability can be

avoided for supply pressures, P. < 10.

Two points should be made:

1. maximum stiffness occurs at values of restrictor coefficients where

damping is a minimum; thus, high stiffness and damping are not
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compatible;

2. maximum stiffness occurs near the restr&ctor coefficient value

where the flow through the orifice is critical.

As the restrictor coefficieWt approaches zero, the stiffness also

approaches zero although damping is increasing. Thus, when designing

for maximum damping, the higher value of A - 5 is generally a better

selection.

The stiffness, Ks, also increases as the span ratio, r, increases.

Furthermore, Ks is non-dimensionalized by the supply pressure (gage);

therefore, the actual stiffness is considerably improved by operating

at higher supply pressures.

4.5 Mass Flow

Figures 12-14 contain curves of the mass flow versus restrictor

coefficient for the three geometries and various supply pressures. The

dimensionless mass flow is defined as

mo - F(Po 2 - 1)

where F is given for the three different span ratios in the table below:

r I

0.4 -1.83
0.6 -3.48
0.8 -8.44

The actual mass flow is given by

S a* 2ho*3

mo "= ( )mo
61RT

Generally speaking, the mass flow does not play a direct part in the
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optimum design of the bearing, but this information is necessary for the

overall design of the supply system. As a rule, a larger mass flow does

increase the frictional losses in the system.

4.6 Squeeze Number

The effect of squeeze number on the stiffness and damping is shown

in Figures 14-17. The results include the two restrictor coefficients

that most influence the bearing design: A = 1.5, 5. Low squeeze num-

bers (a < 10-20) have little effect on the dynamic characteristics. For

large squeeze numbers the damping decreases and the stiffness increases

(termination of the curves at high squeeze numbers is due to instability

of the numerical solution). As the squeeze number increases, the stiff-

ness reaches a maximum. The reason is that the viscous forces oppose

any rapid flow changes through the bearing, and the operation approaches

that of a piston inside a closed cylinder. From Equation (1),

[ph] a 4 constant

or

(Pl + EP 2 )(1 + e) = constant

Thus, p2 = -P1. Integrating both sides over the area and using Equations

(30), (32), (35), and (36);

[Ks] = W + l/(ps-l)

The above equation is in agreement with the values of stiffness in Figure

15 which reach their maximum.
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CHAPTER V

CONCLUSIONS AND OPTIMUM DESIGN

The first decision to be made in the design of the bearing is the

choice between optimum stiffness and optimum damping. Stiffness is

usually the first choice since film thicknesses are on the order of .001

inches and a load disturbance can lead to closure of the bearing if it

is too "soft". Furthermore, natural frequencies of the bearing-load

system must be avoided. However, damping is necessary when disturbances

are present, and many bearings are designed primarily as film dampers.

The design procedure is as follows:

1. For maximum stiffness, select a restrictor coefficient,A = 1-2.

Generally, a larger span ratio and a higher supply pressure increase

stiffness, but these choices must be weighed against the frictional

losses associated with the increased mass flow.

2. The choice of damping is dependent upon the minimum allowable

stiffness. Low supply pressures (Ps = 1.5,2) provide high damping

for low values of the restrictor coefficient; however, there is a

considerable decrease in stiffness. At high supply pressures,

damping increases for larger values of the restrictor coefficient.

Supply pressure has little effect on damping at higher values of

restrictor coefficient, but a higher supply pressure will improve

the corresponding stiffness. The damping and stiffness can also be

improved by increasing the span ratio. Thus, there are two choices

of damping which can be made:

(a) if low values of stiffness are acceptable, choose a high span

ratio with a low supply pressure and a restrictor coefficient
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in the range 1 < A < 2;

(b) if higher values of stiffness are needed, choose a high span

ratio with a high supply pressure and the restrictor

coefficient, A = 5.

3. The choice of restrictor coefficient fixes the dimensionless load

capacity. Once the load is specified, the supply pressure

determines the bearing dimensions.

It is observed that the dimensionless stiffness and damping are a

function of the film thickness. The actual stiffness and damping are

improved by the selection of small film thicknesses. Thus, for a fixed

restrictor coefficient, the film thickness can be made arbitrarily

small by reducing the inlet area of the orifices. In this respect, the

designer is limited by the minimum allowable clearance for the bearing.
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APPENDIX

THE COMPUTER PROGRAM



A-i

LUBR*STFFLR.MAIN
-,L c DESCRIBE FFIL AND OBTAIN OMEGA
2 DOUBLE PRECISION P0,PSRSTpP1SX1,ERR G1 ,G2,AL1#AL2
3 DTMFNSTON
4 1Pl(51051)

--sRFAl 1MMnfl
6 PI=3.14159

7 REAP f 5100) GP[Mn&Mt.#4P#NI#Nl - ______

8 WRITE (6,891)
----9- 891 FORMAT(,11*10Xal ST GMAO.6X.9 PfSUP)9,7 XpRIfSTtl0
10 1'PO',IOX.'MO',lOXP'WO'91OXPF',8X,'STFNESS'96X,9DAMP9)
11 Inn FARMAT(FPln-0.0.T1
12 M3=M1+M2
13 N3=NI+N,'>
14 FAC=1*0

DX=,5'M3
16 DY=0.5*LMD/N3
17 RflY/Y ___ _

18 EPS((COSPI/M3)+B**2*COS(PI/N3))/(1.+B**2))**2
__9 1(1OMG=FAC*2,*(1, .- cRT(iiEPS))ZEp4 -___;

20 C DEFINE BOUNDARY CONDITIONS
21 r- INNER RpUN.. __ _ __ _
22 M4=M3+1
23 N4=N3+1
24 M6=M4+1

~ ____--__N6______ __ _ ___

26 Z4=M4
_ ______ kS1~Y XN_____ ~_~_______-.--.. ___-__

28 M=M2+1
29 N=N2+1
30 ML=M+1

32 DO 1 IA=MPM4

34 1 P1S(IBPIA)=1,

36 3 PlS(1PIC): 0.0

38 4 P1S(IDPI)=OO

40 DO 5 IF=2,N2
41 Zl F=IF ________
42 ZE=IE

44 DO 6 IG=2pN2

46 ZG=IG
4__ 6 p I S( I G t I H_________ -_ 

48 Do 15 IM=NPN4

50 ZN=IN
____ 51._... .__.. ... AS_ f~il ( II..; ZN/IMa1E _._. .. .~....-_..~~ ~. __~~ _ ~_~._
52 DO 820 19=2oN2
S53 820 P15(19#M4+1) =P1S(I9p ____ 3_
54 DO 821 I10=2,M2

~~.. ~ 81m 0 ; sA 3 P15(L

56



A-2

57 C ITERATE THRU GAUSS-SEIDEL
58 C=0.S/(1.0+R**2)

59 C1=8**2
-- __60 DO 7 .I=1,n O
61 ERRI=O.0
& _2 Y=O.lo

63 NN=M4
64 00O 10 T1=2@N4
65 DO 11 IL=2pNN
66 X1=PIS(IKPIL)
67 X=C*(P1S(IKPIL+1)+P1S(IKPIL-1)+C1*(PS(IK+1,IL)
68 I+PIS(IK-TIL)))
69 PLS(IKeIL)=OMG*X+(1.0-OMG)*P1S(IKIL)
70 CALL ERROR(P1SPYPXiERRIpM6N6tpIL,IKeIMAXPJMAX)
71 11 CONTINUE
72 IF (IKE.Q.N2) GO0 TO 12
73 60 TO 10
74 12 NN=M2
75 10 CONTINUE
76 DO 720 T1=2oN2
77 720 P1S(IltM4+1)=P1S(IlPM3)
78 DO 721 11r2 _M2

79 721 P1S(N4+1,I11)=P1S(N3Il11)
80 YF=SQRT(Y)/(M3*N3)
81 IF(ERRI-10.**-3) 13e13t7

__,82 7 CONTINUE
83 13 CONTINUE
84 F=OO
85 C55=DX/(3.0*DY)
86 C66=DY/(DX*3.0)
87 DO 26 IR=MLM32
88 26 F=F+C55*(PIS(N-1PIR-1)+4.*PIS(N-lIR)+PIS(N-1lIR+l)-
89 16.0)
90 DO 27 IS=NL,N32
91 27 F=F+C66*(PIS(IS-1pM-1)+4.*PIS(ISeM-1)+PIS(IS+1PM-1)-
92 16.0)
93 817 CONTINUE
94 READ (5P888) K1,K3tK,KL1lL3,L4
95 Q4=K4
96 R4=L4
97 BY=0.5*LMD/L3
98 BX=0.5/K3
99 888 FORMAT(6I5)

100 DO 31 IA=lK4
101 G2(1,IA)=O00
102 31 G1(1PIA)=0.0
103 DO 32 IB=1,L4
104 62(IB1)= 0.0
105 32 61(IB,1)= 0.0
106
107 C INITIAL GUESSES
108
109 00 33 IC=2,K4
110 DO 33 ID=2,L4
111 33 61(ID#IC)=-(IC+ID)/(04+R4)
112 MNEW=K4-KI
113 NNEW=L4-L1
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114 MNEWI=MNEW-1

116 MNEW2=MNEW+l
NNEW2 NNEW44__

118 MEND=K4-MNEW
hgAi UUND-1 LLNNEW
120 K6=K4+1
1A1 16ZI4+1 ____ _ _ - _ __ _ . - - - - -

122 XNEW=MNEW1
12 NEW=NNEW------- *-------__ _ _- -

124 DO 34 IE=MNEWPK4
I DO 4 TF=NiNFW.LL4

126 34 G2(IF,IE)=0.05-CIF'+IE-mNEW-NNEW)*0.1/(Z4+X4)*Cleo)
.L ~7no :55 TGZ~aMNEW1L-
128 DO 35 IZ=2tNNEW1
129 35% t2(IZ.IG)-(TG+17)*O1/,((XNW+YNEW)*2,)*(-.,) -

130 DO 36 IJ2MNEW
131 no 36 TKZNNEW.L4
132 36 2(IKPIJ)=IJ*0.1/(2.*MNEW)*(-l.),
133_ DO 37 TI MNEWK4
134 DO 37 IM=2#NNEW
135 317 G2(IM.li) Tm*fl/(2.*NNEW)*(1I.)
136 C22=BY/(BX*3*0)

138 PO=3e82D0
139__- DO 81 IJK=1.7 __ ____ ______ _

140 READ(5P401) PSPSIGMPRST
14 401 FEORMAT1UE1" I _____ __

142 IF(RST-30.) 82#83P83
143 83 PO:Pq-.nOn0 ______ ______

144 82 CONTINUE
I4~~ALL CALLLOAn (RST#eW 0 P-SJBOJ PIXjWoY-M F~1M1LL4NAlW.MDLF L

146 1$25tLMDtN3#M3.P~lM6pN6)
147 ----- 9 NNJE_- .__ ___-__ _

148 T=PO/PS
149 _ QT=(2./2 .qi!1AALf±LL ________________

150 IF(T-QT) 94.94,95
J~~1 94~AL1=3 ____ ___-_

152 AL2=F*(P0**2-19)
153MEDBXB -

154 GO TO 96
155 95 ALPHPS/(P0*1.4)-Q..,-24/2..8)*( (PS/fl)**(la/10 4)/
156 1(1.-(PO/PS)**(94/1.4)))

158 AL2=2. *PS*P0/ALPH
I~ SA-_____-*Y* ED/y

160 96 CONTINUE

162 SUM2=0.0

164 SUM1=SUml+C22*CG1(IR'4.MNEWI)+G1(IR-1eMNEW2)+
.. (LR~mE*UGlllRJtmNEW2Jk14+A it IRi1tMNWW4JA.----

166 1Gl(IR+1#MNEW2))
167 41 SJM2SUm2+c22*(C2(IR-1.MNEWI)+62(TR-IPMNFW2)+

168 14.0*(G2( IRMNEWI)+G2(IR.MNEW2) )+G2(IR+1,MNEW1)+
b%- -- 6 ( I R + I v NE.W2il ---- --- -- _

170 DO 42 IS=MNEW2tK3t2
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171 SUM1~SUM1+C11.(G1 (NNEW1,IS-1)+G1 (NNEW2,IS-1)+
--172 1Ah.0*(Gl1(NNFw 1. S) -fl _____)GjNF~rq~)

173 1GICNNEW2plS+1))
174 42 SU2-*9(NWtSI+2NF2T-)
175 14.OsCG2(NNEWIPIS)+G2CNNEW2,Is) )+G2(NNEWIeIS*1)+
176 1G2(NNFW2.TR+1))

177 IVK4
178 IW=NNFW
179 46 DO 47 IT=IWPL4
- 1 DO.00 47 III=MNEWi.TV
181 G1(ITPIU)=(ALI*SUMI+AL2)/C44
182 G2CITrIU)=ALl!6UM2/C44
183 IF(IU.EQ.M4) GO TO 45

- 184 47 CONTINUE __________

185 GO TO 48
186 45 IV=MNEW
187 IW=NNEW2
188 GO TO 46
189 48 CONTINUE
S190 DO_815_111.tKs____________
191 Gl(L4+lpI1)=GI(L4-ltI1)
192 815 fi2(L4+1,Il)=G2(L4-1vI1)
193 DO 816 12=IPL4

195 816 G2(I2,K441)=G2C12vK4-1)
S196 BBX/BY _______ _____

197 C=0*5/(1.O+B**2)
198 Cl=B**2
199 / CALL STFDMP(K4UL4pK6pL6pSlGMeCeC1,N4eM4,G1PG2eMNEWP
200 1NNEwemNF~w1 MNEW2PNNEW1.NNEW2tALPHw.AL1 ,AL2.,C22,C11,
201 lC33eL3eK3tMENDuNENDePlePSuBXeBYPOeFgRSTPWOPMOPJMAX#
202 1JMAX) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

203 GO TO 81
S2o4 25 WRITE(6.199)_PSPSI&MtRST __________

205 199 FORMATC'0'e'POeLE.O.OR.GEuPS',3FI0.5)
2o6 81 C0NTINUlF
207 STOP
208 END__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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U IR*STFFLR.*SUBi 
4 v p~p M~SU~IBROUITINE ERROR(P1SNY.X1.EFRR 14~*.,uMXMX

2 DOUBLE PRECTSION PISPXJPERR~tERR
DIMENSION Pl'(lU.M)

'4 ERR=ABS(PIS(JPI)-X1)

6 IF (ERR-ERRl)ltlt2
7__ _ __ _ ERR1 RR I- ~ - - - -- - - - -_

8 IMAXI

10 1 CONTINUE
it1 RFTIJRw

12 END
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LtibR*STFFLR *SUB2

-_-------SIM-0-UTINF 2LDAD(XtW0vPStX1,PlStPuDXtDY.P9MN4
2 lNlFMOPFF $PLMON3eM3#PJPM6pN6)

DDJSLE..PRC-SIN PSI.X.ZILZ2 7:3LLFI~tSTEST *Ti * T2 eT 3* -. ----

4 1FP#YlpPlS
5% REAL IMfl.Mf

6 DIMENSION P1S(N6tM6)pPl(N4pM4)

8 PTEST=PS*QTESY
9IF (X l- PTES2LAJI 4p4#__0

1010 CONTINUE
11 DO 1 1=1#20n _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _

12 Zl=X/(X1**2-1.DO)
13 - Z2=(X1/PS51*AID1O/1*4pn)
14 Z3=DSQRTC1.DO-CXl/PS)**C.4D0/1,4D0))
15 FUN~1 .f0-1*Z*Z3S2-_____________
16 TEST=ABS(FUN)
t7 IF (TFST-fl.nnfool) 2P303 ____________

183 T1=2.DO*X1*PS**2/(X1**2-1.DO)
-- 19 _____*X ** l l.D

20 T3=PS**(240/1'4D0) *.4DO*X1**(-'.D0/1lo4Dn)/

22 FP=(T1-T2+T3)*Zl*Z2*Z3
23YI=XI _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

24 Xl=Xl-FUN/FP

26 11 IF(XI) 96P96#1
S27 96 F~P~D _____ ____ __

28 Xl=Yl-FUN/FP
29 60 TO 98
30 1 CONTINUE

S 31 2 CONTINUF_____ ____

32 T=Xl/PS
33 IF(T-QTFSY) 4t4t5 ____________ __

34 4 X1=SQRT(1.+X*PS**2*( .4/2.4)**.5*(2./2,4)**2.5)
35 5 IF(XI.LF.0) RETURN 16
36 -DO 6 J1'PM4
37 DO 6 K1,oN4
38 6 Pl(Kj)=SQRT(1.0+(Xi**2-1.0)*P1S(KPJ)**2)

39~ W=0.0.
40 DO 7 L=2tN3, 2
41 DO 7 IM=2tm3t2
42 7 W=W+(DX*DY/9.0)*(P1 (L~1e IM+1)+P1(L+1, IM-1)+

____ ip1(L-1ItM+)+P(L-MI±4.*(Pl1(LITM+1)+P1Leim1l)+__

46 P=WO/LMD
47 MO=-F*(X1**2-loO)
48 Wo=(WO-1q)/(PS-1*)
49 RETURN
50 END
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U ifR*STFFLRe*SUB3_AfiNSyrMICC-RPo,102
S~ 1 SIIR 1ROLITINE STFDMP(MoN4MNSG.fI~pC1~

2 1MNEWPNNEWMNEWMNEW2NNEWNNEW2pALPHALIAL2C 2 2 t
3 l~~1l1 C33oN3om3tMENnoNENnDP .pcDx-nyopoFRTW0,Mnflb--

4 1IMAXPJMAX)
S; nnti"~lEg PRECISION PpCUISRqT

6 lpGl1G2pSUM19SUM2ALIPAL2IXG1,XG2IERR2IERR3

7- - REAL MO-
a DIMENSION GI(N6,M6)P62(N6pM6)eP1(NR#NC)

9T ps__________

10 QT=(2/24)**(1'4/094)
ll IF(T-0T)4&5
12 4 AL11.,

S13 AL2.E* (A*-1.)

14 C44=2. *NEND*DY/DX+2 **MEND*DX/DY

16 5 ALPH=PS/(PO*1.4)CO.*4/ 2e8)*( (PS/po)**(1./1.'4)/(1.-

18 AL1=2*PS*PO/(ALPH*(PO**2 n1.)*F)
19 - -At !2'=.!EPc*PnZALPH__

20 C44=1.+AL1*(2*DY*NEND/DX+2*DX*MENDfDY)
21 E6 CONTINUEF-_____________

22 0M2=1.O
23 DO 0 I T-.RnO

24 EG1O.O0

26 ERR2=0*O
27 ERR3:tJ.0

28 CALL GCMPT(G1,G2,2,M4u2eNNEWluN4M&eN6,M6pCPCl9
29 IEGlFG2.ERR2tERR3,OMGPP1NRNC~flY.SIGMeIMAXFJMAX)-- ---

30 CALL GCMPT(Gl'G2,2,MNEWleNNEWVN4,N4pM4PN6tM
6 pC9Cl'

31 -1EGI FG2 s RR 2 aERR 3L!1N-- DXS~MM JAX)
32 CALL GCMPTCG1,G2,MNEW2,M4tNNEW2D.N4pN4M4N6M6pCCl9

33.. -____ 1 jER~iR3- M 'P I ,NP±NPACl S1~
34 SUM1=06O
35 SUM2=0.0-
36 DO 11 IR=NNEW2pN3t2
37 +C.AG.iR.L4 W1)G1C!1±N2L...- .. .

38 1L.0*(G1CIRPMNEW1)+G1CIRPMNEW2) )+G1(IR+1,MNFW1)+

(40 11 U2SMC2*2(RIMEI62RlMNW)

42 1+G2(IR+ltMNEW2))
~~A~~-- ~ ~ :2.-I.S;MNEW2t. t-2--- ~ - ------- - -- -.-. .-.

44 SUM1SUM1+Cl*(G(NNEWlPIS1I)+Gl(NNEW2plS-l)+
4 t&NNE3U.. 11±INEI LA&INNE~iL~) -It TS
46 1+GlCNNEW2IS+1))

12__ jStJM2Um+C1*(2(NNFWIeTS1)+rGP(NtiFWTl)+_
48 1490*(G2(NNEWIeIS)+G2(NNEW2IISfl+62(NNEW1P!S+1)+

50 IV=M4

52 16 DO 17 IT=IWPN4
no 17 TI=MNFW#TV

54 XGI=Gl(ITtIU)

56 GI (ITPIU)(AL*SUM1+AL2)/C44
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57 G2(ITPIU)=AL1*SUM2/C44.
.Iu~uU1o Iil=)Gkl (T-#, 1JJ+(uQM21 GL

59 G2(IT, IU)=0M2*G2(IT, IU)+(1.-0M2)*XG2
0 CALL FRROR(GI.FGIuXG1tRR2MA.oN6eTJIlaTMAXJU)AXL)--,---

61 CALL ERROR(G2,EG2,XG2,ERR3tM6,N6,IU.ITeIMAXuJMAX)
62 IFTj*FaM4) GO Tn 19
63 17 CONTINUE

6 TO I& _ A__- _ _

65 15 IV=MNEW
S 66 IW=NNFWll--_____________

67 GO TO 16
S 68 is CONTINUE ____________________

69 DO 815 I111eM4
70 GI(N4+lt11J=GI.1N4Anlt1)
71 815 G2(N'441#I1)=G2CN4-lpIl)
72 DO 816 12=ltN4
73 Gl(I2pM4+1)=GlC12pM4-1)
74__ 816 G2(12PML4+1)=G2(12ePM4-1)
75 EG1=SQRT(EGl)/Cm3*N3)
76_ EG2=SGRT(FG2) /(M3*N3)
77 IF (ERR2-.5*10.**-3) 19P10#10
78 19 IF (3FRR3105*n-3j) 20P10,10 ____ _ _

79 10 CONTINUE
go 20 CONTINUF
81 W21=0,0

83 CONST=DX*DY/990

85 DO 1 K=2#N3t2
86 W,1=W21+CONST*(GI(K+IPJ+1)/P!1(K+IPJ+1)+Gl(K~g ,J-1)
87 1/P1CK+1,.J-1)+G1(K-lJ41 )/PI (K-1,j41 )+G1(K-1.J-1)

90116**Gl(KJ)/PIKJ) ______________
91 1 W22=W22+CONST*(G2(K+luJ+1)/P1(K+1,J+1)4G2(K+1,j-1)

92 /P1(K+1.J.1)+G2(K.1,J+)/P(K.1..j.1)+G2K-,J..1)
93 1/P1(K-1,J-1).4.*(G2(K.J+1)/PlCKPJ+1).G2(KeJ-1)

95 116**G2(KPJ)/P1(K#J))
S96 W214.*W21__________________

97 W22=4,*W22

99 DAMP=-12**W22/SIGM
1nQ.ok WRITE (6#889) SIGMPPSRSTLRon#WOIPF.STTFFPnAMP
101 889 FORMAT('0',5Xp9El2o3)

12RETURN ________

103 END
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LtjBR*STFFLR. SUB4
I . - SUB1ROU-IT INE GC MPT (6G2 s J a K aM vN sN4 pM4 oN6 #M6 oC vC I G I--

2 1EG2,ERR2,ERR3,OMGPlNRPNCIDXeSIGMIMAXJMAX)
------3 DURI F PRECISION t61 bG2&X~lrXG2s.XGoYGoERPit.RR3

'4 DIMENSION GI(N6pM6)PG2(N6pM6),P1(NRPNC)

6 DO I I=JPK
S7 no i A- i I __ __ __ __ __ __ __

8 C2=SIGM*DX**2/PlCLpI)
9 -- r__ j3S IM*F1(L aI *D **2

10 XMU2*(COS(P/2*M4-1))+COS(PI/(2*N4-.1.)))
it RWA=( (C2*p**2.SOT(C2**2*X**&416.aXMII) )**2)If64-
12 OMG=2o/(19+SQRTC1.-RHO**2))

XGIr((L.T) __ __ _ _ _ _ _ _ _ _ _ _ _ _

14 XG2=G2(LIl)

16 1C2*G2(LPI))

18 YG=C*(G2LI+l)+G2(L11)+Cl*(2(L+l)G2(L-leI) )-
19 l -5-2*XG1) __ _ _ - _ _ _ _- _ _ _

20 G2(LpI)=YG*OMG+(l*-OMG)*62(Lol)
Pi1 CALI FRROR tG1.F(GIXGl PFRR7.MAoN6#I T .TMAY.JMAX)
22 CALL ERROR(G2eEG2,XG2pERR3eM6,N6PleLIMAXPJMAX)
23 1 CONTINUEJ
24 RETURN

iQoCHPS STFFLR* AIN ____

___pCHLS STFELj .SUBE2

QPCHvS STFFLR*SUB3 ------ __

5ELR15B L4 -------


